skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vondrick, Carl"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 10, 2026
  2. Free, publicly-accessible full text available November 14, 2025
  3. Free, publicly-accessible full text available November 13, 2025
  4. A robot can learn full-body morphology via visual self-modeling to adapt to multiple motion planning and control tasks. 
    more » « less
  5. We introduce a deep learning model for speech denoising, a long-standing challenge in audio analysis arising in numerous applications. Our approach is based on a key observation about human speech: there is often a short pause between each sentence or word. In a recorded speech signal, those pauses introduce a series of time periods during which only noise is present. We leverage these incidental silent intervals to learn a model for automatic speech denoising given only mono-channel audio. Detected silent intervals over time expose not just pure noise but its time-varying features, allowing the model to learn noise dynamics and suppress it from the speech signal. Experiments on multiple datasets confirm the pivotal role of silent interval detection for speech denoising, and our method outperforms several state-of-the-art denoising methods, including those that accept only audio input (like ours) and those that denoise based on audiovisual input (and hence require more information). We also show that our method enjoys excellent generalization properties, such as denoising spoken languages not seen during training. 
    more » « less
  6. We train embodied agents to play Visual Hide and Seek to study the relationship between agent behaviors and environmental complexity. In Visual Hide and Seek, a prey must navigate in a simulated environment in order to avoid capture from a predator, only relying on first-person visual observations. By probing different environmental factors, agents exhibit diverse hiding strategies and even the knowledge of its own visibility to other agents in the scene. Furthermore, we quantitatively analyze how agent weaknesses, such as slower speed, affect the learned policy. Our results suggest that, although agent weakness makes the learning problem more challenging, they also cause more useful features to be learned. 
    more » « less